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FLAT RIEMANNIAN MANIFOLDS

ALPHONSE T. VASQUEZ

Some years ago, Auslander and Szczarba [2] gave an example of a compact
flat manifold having nontrivial Stiefel-Whitney classes. This was, I imagine,
somewhat surprising in view of the fact that the (real) Pontryagin classes of
any Riemannian manifold can always be expressed in terms of the curvature
tensor and thus are trivial for flat manifolds. §5 of this paper is devoted to
more examples of this general sort—the general paucity of examples in this
area being a great hindrance to any reasonable conjectures. The only difficulty
here is finding nontrivial yet computable situations.

The Main Theorem 2.3 of this paper is a decomposition theorem of sorts
for compact flat Riemannian manifolds, and has strong consequences for the
study of Stiefel-Whitney classes of such manifolds. The theorem is in the
same general spirit as that of Calabi [17], but seems technically unrelated.

Perhaps the simplest compact flat manifolds are flat tori—these are the ones
with trivial holonomy group. In §2 we describe the notion of a “flat toral
extensions”. Roughly speaking, this is a way of putting together one compact
flat manifold and a flat torus to make a new flat manifold the dimension of
which is the sum of the dimensions of its constituents. It is, more technically
speaking, a fiber bundle over the manifold with a flat torus as fiber. The group
of the bundle is a quotient of the holonomy group of the manifold and it acts
on the flat torus isometrically. The tangent bundle of such a construct turns
out to be induced from a bundle over the base space—a technical fact which
we exploit to obtain information about characteristic classes of flat manifolds.

The main theorem states that under some conditions a compact flat mani-
fold arises as a flat toral extension. The condition is stated in terms of the
holonomy group of the manifold: to wit

There is associated with each finite group @ a positive integer n(P) such
that:'if M is a compact flat manifold with holonomy group @, and dim M >
n(@), then M is a flat toral extension of another flat manifold of dimension
<n(d).

It is convenient to say M is a @-manifold if it is compact, flat and its holo-
nomy group is isomorphic to @. The theorem implies that all @-manifolds
““are” flat toral extensions of a finite set of flat manifolds. Here “are” means
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up to connection preserving diffeomorphism (rnot, as might be expected, iso-
metry). Among the consequences of this fact we mention the following.
The characteristic algebra of a @-manifold vanishes in dimensions > n(®),
(2.8). If dim M > n(®P), then M is a cobordant to zero and hence only finitely
many @-manifolds can fail to bound, (2.4).

We note that it is an open question whether or not all flat manifolds bound.
A mild variant of Theorem 3.6 was first conjectured by L. Auslander, in one
of many stimulating and fruitful conversations on this and related topics.

Notation and conventions. R will denote Euclidean space of dimension
n considered as a Riemannian manifold with its usual metric. A full-lattice L
of R™ is a subgroup of R", which is generated by » linearly independent
elements of R*. The quotient space R*/L is thus an n-torus—i.e., a manifold
diffeomorphic to a product of » circles. A flat-torus is an R*/L, L a full-lattice,
considered as a Riemannian manifold, with the induced Riemannian metric;
it is a flat in the classical sense of having zero curvature. ‘

A manifold will mean a connected differentiable manifold of class C~. The
tangent bundle ¢ (or z(M)) of a manifold M is, of course, an n-dimensional
real vector bundle over M. As such (at least when M is paracompact) it can
be induced from the universal n-dimensional vector bundle £, over the space
By, the classifying space for the orthogonal group O(n). See [11] for this
notion. Indeed, there is a well-defined homotopy class [z] of maps from M to
By, which “classify” z; i.e., f: M — By, is in [7] if and onmly if f*(¢,) is
equivalent to z. Since all the f’s which classify ¢ are homotopic, they all induce
the same homomorphism H*(B,,,; R)—H*(M; R). The image of this map is
the characteristic subalgebra of M ; any element in the image, a characteristic
class of M. Here R can be any ring of coefficients.

For example, for R = Z, = the field of two elements, H*(B,,,,Z,)
~ Z,[wy,- -+, w,] for some w, e H(By,, Z,),i = 1, - - -, n, called the universal
Stiefel-Whitney classes. The image of w; in H*(M, Z,) via any classifying map
is the i-th Stiefel-Whitney class of the manifold M. Similarly for R = Z, the
group of integers, there are universal Pontryagin classes p, ¢ H*(B,,,, Z); and
corresponding p,(M) e H'*(M ; Z), Pontryagin classes for the manifold M.

If M is a compact n-manifold H,(M, Z,) = Z,, the non-zero element is the
fundamental class of M (denoted [M]). If i, < .- <iyand i + -+ + i
= n, thenw;, (M) - - - w, (M) ¢ H*(M; Z,) ~ Hom (H,(M, Z,), Z,). The result
of evaluating this cohomology class on the fundamental class yields an element
of Z, (notation w,, - - - w,; [M]); this is the Stiefel-Whitney number of M cor-

responding to the partition (i, - - -, ;) of n.
We have a similar notion of Pontryagin number. These are defined where
we have n = 4(;, + .- + i) and when M is an oriented n-manifold—i.e.,

a generator [M] e H,(M; Z) =~ Z has been specified.
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1. General considerations

Let M be a compact, flat Riemannian manifold. As is well known, its
universal covering space can be identified as a Riemannian manifold with R".
Consequently, the fundamental group z of M acts via isometries of R" in such
a way that we may identify M with the space of orbits of this action; symbol-
ically M = R*/z. The group &, of all isometries of R™ contains a normal
subgroup consisting of all translations. This subgroup will be identified in the
usual way with R". Denoting by D, the natural homomorphism of &, onto
0(n) = the group of orthogonal linear transformations of R* we have R* =
Kernel D and thus D(x) = z/xz N R™. It is known [3] that this is a finite sub-
group of O(»n) and is called the holonomy group of M. We will use the notation
@ = D(x).

Recall that for any reasonable group G, we have the notion of a universal
principal G-bundle. The total space of such an object we will denote by E;
the base space by B,. We recall the criterion of [11] which asserts that a
principal G-bundle is universal if its total space has no non-trivial homotopy.
Our first remark is that we have one of these objects at hand; to wit, R" is
the total space of a principal z-bundle with base space M; thus E, = R" and
B, =M.

Now G — B, behaves more or less like a functor, and in particular, from
the surjection D: = — D(x) = @ we can cook up a corresponding map B,,: B,
— B,. Finally, the inclusion i: @ C O(n) yields a map B,: B, — By,,. The
universal n-dimensional vector bundle over B,,,, of course yields, via this map,
a vector bundle 7 over B,.

Proposition 1.1. Bj}(y) is equivalent to the tangent bundle of M.

Proof. We have a commutative diagram as follows

E
R*=E, % E,

|, |

B
M = R"/z = B,—> B,

where E;(¢-¢) = D(¢)-E (e) foralls e r and e ¢ E_ = R™.

Let the total space of 5 be E, X R"/@ where g € @ acts via gle,v) = (g-e,
g-v). Now clearly the total space ¢ of the tangent bundle of M = B® can be
taken to be R* X R"/z where z acts via

(v, v,) = (ov,, D(0)v,).
Thus we clearly have a commutative diagram as follows:
t=R* X R"z — E; X R*®: {v,, v} — {Ep(v), v}

L

M=R'z —2 . B,
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and the result follows.

Now it follows that B, Bj,: B, = M — B, is the map which classifies
the tangent bundle of M. The following conclusions are elementary.

Corollary 1.2, If aec H(M,R), { > 0, is in the characteristic algebra of
M, then Na = 0 where N = the order of @.

Proof. Since the map in question factors through B,, this is a consequence
of the fact that H¥(B,; R) = Hi(@; R) and it is known that every element
be H(®; A) (i > 0) satisfies Nb = 0; see [4].

Corollary 1.3. If the holonomy group of M has odd order, all its Stiefel-
Whitney classes w; are zero (i > 0). Consequently all its Stiefel-Whitney
numbers vanish and it is therefore the boundary of some compact smooth
manifold of dimension n + 1.

Proof. The first few statement is an immediate consequence of Corollary
1.2 and the rest follows from the results of Thom [12].

Corollary 1.4. The Poniryagin classes p, (M) € H'*(M ; Z) of M are torsion
classes; and consequently if M is orientable, its Pontryagin numbers are all
zero.

Proof. Again a trivial consequence of Corollary 1.2. Alternatively a proof
can be made from the fact that the image of p,(M) in H*(M; R) (R = the
real numbers) can be represented explicitly in terms of the curvature tensor
which is O since M is flat.

Corollary 1.5. If the holonomy group of M has odd order, it is necessarily
orientable and is the oriented boundary of a compact oriented smooth (n + 1)
—manifold.

Proof. Since w,{M) = 0 (Cor. 1) M is orientable and now the result is a
trivial consequence of the knowledge that the Stiefel-Whitney and Pontryagin
numbers are complete invariants of oriented cobordism. See [12] and [14].

Remark. It is known [2] that w,(M) need not always be 0. The holonomy
group of the relevant M is Z, X Z,. Just what can be said about the charac-
teristic algebra of a flat manifold seems a very difficult question. In the last
section of the paper, we give more examples in the spirit of [2] where the
Stiefel-Whitney classes turn out to be non-trivial. On the other hand, one
consequence of the theorems below is that the characteristic algebra of a flat
manifold vanishes above a dimension which depends jonly on the holonomy
group.

2. Flat toral extensions

If M is a manifold and m, ¢ M, we know that # = =,(M, m,) acts as a group
of diffeomorphisms on M, the universal covering space of M. Further M can
be identified as the space of orbits of this action—a situation we symbolize by
M= M/r.

Suppose now that = also acts as a group of diffeomorphisms of a manifold
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F. We can let = act diagonally on M X F —i.e., gen, meM, feF,

g-(m,f) = (g-m, g-f), and form the space of orbits M x F/z. There is an
obv1ous map p: M X F/xr — M|z = M, and it is readily verified that we have
here a fiber bundle in the sense of Steenrod. The fiber, of course, is F and the
group is = (with the discrete topology!). The total space can be given a smooth
structure in an obvious way and p is smooth.

If M and F are both Riemannian manifolds, and if = acts via isometries on
F, then (with the obvious Riemannian structure on M) r acts isometrically on
M X F and yields a Riemannian structure on M x F/x. Clearly this process
is such that if both M and F are flat, then M x F/r is also flat.

Definition 2.1. A flat-toral extension of the Riemannian manifold M is
any Riemannian manifold isometric to M X F/z where F is a flat torus on
which z acts via isometries. 1t is convenient to adopt the convention that a
single point is a O-dimensional flat torus. 1f this is done, M is itself among
the flat toral extensions of M. The others will be called non-trivial flat toral
extensions of M.

The following proposition follows readily from the definition but we will
defer its proof until later so that we can state the main theorem and one of
its corollaries.

Proposition 2.2. A compact non-trivial flat toral extension is always a
boundary.

Following [6], we call M a @-manifold if its holonomy group is isomorphic
to the group @.

Main Theorem 2.3. Ler @ be a finite group. Then there is an integer n(®)
such that: if M is any compact flat-Riemannian manifold with holonomy
group isomorphic to @, then M is a flat toral extension of some compact flat
Riemannian manifold of dimension < n().

We note that the theorem is trivially true for M’s such that d1m M < n(D)
for such an M is a trivial flat toral extension of itself.

Corollary 2.4. All ¢-manifolds of dimension > n(®) are boundaries.

Since up to affine (not necessarily Riemannian) equivalence, there are only
finitely many flat manifolds in each dimension we conclude: only finitely many
affine equivalence classes of ®-manifolds can fail to bound.

Remark 2.5. Very little is known about n(®). The proof yields n(®) =
if @ has prime order and very little more. The final section shows by calcula-
tion of some special cases that #n(Z3*) > 2k and that n(Z%#*) > 2k.

We turn to some preliminaries to the proof of the proposition. The basic
business is to examine the tangent bundle along the fibers. The fiber of this
bundle at a point e is the kernel of the surjection dp: T(E), — T(B),,-

Lemma 2.6. If M is a Riemannian manifold, and M' = M X Flz is a
non-trivial flat toral extension of M, then the tangent bundle along the fibers
is induced from a vector bundle over M via the projection map.

Proof. F = R"/L for some lattice L. R™is clearly its universal covering
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space. If o: F — F is any diffeomorphism, it lifts to a diffeomorphism &: R”
— R™. ¢ is determined not uniquely but up to a translation by an element of
L. 1t follows that the differential D(¢)(x): R™ — R" depends only on p(x) ¢ F
where p is the canonical projection. We may thus denote it by D(s),, y = p(x).
It is trivial that D(g,0cq,), = D(0)),,4, > D(s,),. Consequently it is readily
verified that if z acts via diffeomorphisms, then the tangent bundle along the
fibers is the space M X F X R"/z where

a-(,y,v) = (o-11,0(), D(0),0) .

Now, however, if z acts via isometries of F, then each ¢ is an affine map and
D(¢), is wholly independent of x. Thus we may form

M X Rz by o(#,v) = (arit, D(0),(v))

for any x. This is a vector bundle over M/r = M and the obvious projection
map M X F/r — M|r = M is covered by a bundle map M X F X R*/x —
M x R"/z.

Lemma 2.7. The characteristic algebra of M’ vanishes in dimensions
exceeding the dimension of M.

Proof. If p: M’ — M is the projection, we have the usual exact sequence

0 — bundle along the fibers
— tangent bundle of M’ — p~’(tangent bundle of M) — O .

Since M’ is Riemannian, it follows that T(M’) is the Whitney sum of the two
extreme bundles and consequently 7(M’) = p~'(a bundle over M). Thus the
map which classifies the tangent bundle of M’ factors through M. Since Hi(M)
= Q for { > dim M, we are done.

The proposition trivially follows from Lemma 2.7, since a manifold bounds
if and only if all its Stiefel-Whitney numbers vanish. See [12].

Corollary 2.8. Suppose M is a compact flat Riemannian manifold with
holonomy group @. Then the characteristic algebra of M vanishes in dimen-
sions greater than n(®).

Same proof.

3. The basic algebraic theorem

A compact flat Riemannian manifold is “determined” in a strong sense by
its fundamental group, and so we formulate and prove here some algebraic
facts which are more or less equivalent to the main theorem.

The first order of business is to be able to recognize the fundamental group
of a compact flat Riemannian manifold.. The basic result here is in [1]. We
want a mild looking variant of this theorem. It seems annoyingly difficult to
prove. Indeed, an imitation of the proof in [1] would really be about as effi-
cient as the path taken here; but there is a mildly amusing algebraic lemma
along the way.
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Theorem 3.1, = is the fundamental group of a compact flat Riemannian
manifold of dimension n if and only if

a) & is torsion free,

b) x contains a normal subgroup N which is free abelian of rank n and,
furthermore,

¢) =/N is a finite group.

Proof. We reduce this theorem to a completely analogous one in [1]. The
only difference between the conditions here and there is that in [1] it is re-
quired in addition that N be maximal abelian. Thus the burden of our proof
is to show that the existence of N implies the existence of an N’ which is
normal, maximal abelian, free abelian of rank » and of finite index. We claim
that N' = {¢ € z|on = no v n € N} is such a group. It is trivially normal and
if abelian, clearly maximal abelian. Indeed, the only difficult statement is
that N’ is abelian. We defer this for a moment and show that if abelian N’ is
free abelian of rank n. Since N'/NC /N, N'/N is finite and so N’ is finitely
generated ; and since r is torsion free, it must be free abelian of some rank.
But again, since N’/N is finite, this rank must be ». That N’ is abelian is a
trivial consequence of the following lemma.

Lemma 3.2. A torsion-free central extension of a finite group is necessarily
abelian.

Proof. Suppose ¢: G — @ is a homomorphism onto the finite group @
with Kernel ¢ C Center (G) and G torsion-free. Calling K = Kernel ¢ we
have (see [8]) an exact sequence as follows:

H(0,H(K,2)) — H(?; H(K, Z)) > H(G,Z) — H($,2) - 0 .

Since K is central, K is a trivial @ module so the second group “is” H,(K, Z);
and since K is abelian this in turn “is” K. But since @ is finite, every element
of the first group is of finite order; and since K is torsion-free, the first homo-
morphism must be trivial. Replacing H,(G, Z) by G/[G, G] we thus have the
following exact sequence:

0—-K—-G/IG,G]l > H(@,Z2) -0 .

The morphism from K to G/[G, G] is induced by the inclusion K C G, and
thus K N [G, G] = {1}, or equivalently [G, G] is isomorphic to a subgroup
G/K = @, a finite group. Thus [G, G] is a finite subgroup of the torsion-free
G and hence [G, G] = {1}.

Remarks 3.3. The group N’ being maximal abelian and of finite index
in r is easily shown to consist precisely of those elements of 7 having only
finitely many conjugates. This canonically determined subgroup we will denote
by #(z), and call it the translation subgroup of z. Clearly the finite group
z/t(x) acts faithfully on #(z), and is called the holonomy group of . We will
call rank (#(x)) the dimension of z. It is convenient to introduce some
notation.
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Definition 3.4. A group is a Bieberbach group if and only if it contains a
normal, free abelian, finitely generated subgroup of finite index. Thus the
class of torsion-free Bieberbach groups is precisely the class of groups we have
just been discussing. We can summarize all this in a convenient package.

Theorem 3.5. A group = is the fundamental group of an n dimensional
compact flat Riemannian manifold if and only if it is a torsion-free Bieberbach
group of dimension n. The subset t(zx) consisting of elements having finitely
many conjugates is a maximal abelian normal subgroup of finite index and is
a free abelian group of rank n. The homological dimension of such a group
is, in fact, n.

Proof. All but the last statement has already been proved. To do this let
M be a compact flat Riemannian n-manifold with fundamental group z. Ac-
cording to [5], this space can be triangulated as a finite simplicial complex.
Its universal covering space M can therefore be compatibly triangulated. Let
C; be the group of oriented simplicial chains of M. Since = acts as a group of
deck transformations on M, and the triangulation of M is compatible with
that of M, it is easy to verify that C; is in an obvious way a free Z[z] module
with one generator for each oriented i-simplex of the triangulation of M. Since
M is an n-dimensional manifold, C, = O for i > n. Also since M can be
identified as a Riemannian manifold with R", we know that the complex
(Cy,8,) is acyclic. Thus we have exhibited a resolution of length n of the
trivial Z[z]-module Z by free Z[z]-modules. It follows that the homological
dimension of z is less than or equal to n. To see that it is exactly » we note
that if we view Z, as a trivial z-module, then C;&,Z, is canonically isomor-
phic to the simplicial chain group of M with coefficients Z,. Since M is a com-
pact, connected n-manifold, we know H,(C, ® Z,) =~ Z,, and hence H,(x;Z,)
= Z, and the homological dimension of r is at least n.

The following is the main algebraic theorem in the paper. See [13] where
it was announced.

Theorem 3.6. Let @ be a finite group. Then there is an integer n(Q) such
that: if © is a torsion-free Bieberbach group with holonomy group isomorphic
to @, then 1(7) contains a normal subgroup A’ such that z/A’ is a torsion-free
Bieberbach group of dimension < n(9).

We remark here that the difficulty lies. in controlling torsion in z/4’. Before
proceeding with the proof we mention the machinery used in keeping track of
the torsion. Associated with the hypothesis of Theorem 3.6 we have the exact
sequence

*) 0 N LAY, 1,

where N = #(z) and @ =~ =n/t(x). We use O and 1 to emphasize the fact that
we will write N additively and @ multiplicatively.

If we have any exact sequence such as (*), we may view N as a module
over @ via
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o-n = gng™' for any g¢ p~'(0) .

This is well defined since N is abelian. Also the extension itself is described by
an element & € HY(®, N) (for details see [4] and [6]).

Indeed, given the @-module N, any « ¢ H(®, N) will correspond to some
exact sequence such as (*). In particular the isomorphism class of the group
in the middle of that exact sequence is determined. Calling it =, we formulate
conditions on « which tell us about torsion in z,.

Lemma 3.7. Suppose the @-module N is a torsion-free group. The exten-
sion w, has torsion if and only if J,(a) e H(®',N) is zero for some cyclic
group @' of prime order in @. Here J, : H(®, N) — H¥®',N) is the map
induced by the inclusion @’ C @.

Proof. 1If x, has torsion, it will have an element x of prime order. Let @’
be the subgroup of @ generated by p(x) € @. If @ = {1}, then x ¢ N, which is
impossible since N is torsion-free. Thus @ is cyclic of prime order. Clearly
J, () € HX(@', N) corresponds to the exact sequence

0N p (@)L — 1.

But this sequence clearly splits, i.e., there is a homomorphism A: @' — p~(@")
such that po & = the identity. Indeed let A(p(x)) = x; this works since x has
prime order. Hence J,.(a) = 0.

The argument can be reversed to prove the lemma in the other direction.

Remark. It is clear that we could if we wish, restrict ourselves to consid-
ering only one ¢’ out of each conjugacy class of subgroups of prime order.
This remark is conceivably useful in “minimizing” n(®).

Proof of Theorem 3.6. Case I. @ is cyclic of prime order. In this case
n(®) = 1 will do. The proof is based on the results of [10] which tell us more
than we need to know about the structure of the @-module N. This paper,
indeed, proves that N is the direct sum of various types of sub-@-modules.
Call the submodules N;. Now N = @ N, implies HX@,N) = @ H¥ @, N,).
A simple argument (see [7] for example where this is done explicitly) shows
that each N, is such that either H*(@; N,) = O or N, is an infinite cyclic group
on which @ acts trivially. Since a ¢ H*(@, N) is not zero, the component of «
in one of these N,’s is non-zero. Thus if 4’ is the sum of the other summands,
the projection map N — N/A’ takes « into a non-zero element «’ of
H¥@,N/A’). But & corresponds to a torsion-free extension r,, of @ by N'A4.
Indeed, one can easily verify that r, is itself an infinite cyclic group. In any
case A’ is normal in 7 because A’ is a @-submodule, and clearly n/4’ ~ «,,
and we are done.

Case II, the general case. For each cyclic subgroup @’ of prime order, we
may view N as a @’-module. As in Case I there is a @’-submodule 4’(¢’) of
N such that N/A'(@') is an infinite cyclic group and the composite homomor-
phism
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B, N) 2% HH®', N) — HX@', N/A(@))

is non-trivial on «.
Let A”(@) = N ¢A4'(@’). Clearly A”(®’) is a @-submodule. Let 4’ =

L34
N{4”(@")| @’ is a subgroup of prime order}. Clearly 4’ is a @-submodule.
We now show that A4’ works. The extension 0 —» N/4A’ — z/4’ — @ — 1
clearly corresponds to the image o’ of @ in HX®,N/A’). x/A’ will thus be
torsion-free if ¢’ never restricts to 0 in H%@'; N/A’). This follows from the
commutativity of the diagram

H*®,N) H(®,N/A")

HQ',N) — H¥?',N/A"(9")) «— H @', N/A4) .

It remains to calculate dim z/A4" and show that it is bounded by an integer
n(®) depending only on @.
Clearly NfA" — ][ N/oA’(®’) is an injection. But each factor on the right
a, &’

is a free abelian groilp of rank 1 and the number of factors depends only on
@. Thus rank (N/A’) < the number of factors on the right. It is clear that
rank (N/A") = dim (z/A4’), although this is not the definition of dim =/A4’.

Corollary 3.8. If ae Hi(M; R) is in the characteristic algebra of a com-
pact flat Riemannian manifold M, and i > n(@) where @ is its holonomy
group, then a = 0.

Proof. The classifying map [z]: M — B,,,, for the tangent bundle of M
factors through the map B,: M = B, — B, where D: = — @ = z/i(z) is the
homomorphism from the fundamental group = of M onto the holonomy group
@. By Theorem 2.4 this homomorphism D factors through a torsion-free
Bieberbach group n/A’ where dim (z/4") < n(@). Now by Theorem 3.5
HYB.,) = 0, and hence H¥B,,,.,R) = 0 for i > dim (z/A4"), in particular,
for i > n(®).

4, The main theorem

Our task now is simply translating some algebra into geometry—this will
yield flat toral extensions and ultimately, the main theorem, Theorem 1.2.

Theorem 4.1. Suppose M is a compact flat Riemannian manifold with
fundamental group r, and further that t(x) contains a normal subgroup A’
such that = = n/A’ is torsion-free. Then M is a flat toral extension of a com-
pact flat Riemannian manifold with fundamental group z.

Note. According to Theorem 3.6, such an 4’ will always exist if dim M
> n(®), @ = holonomy group of M. Since we have already seen (Theorem
3.1) that 7 is the fundamental group of some compact flat Riemannian mani-
fold, the result comes as no great surprise.
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Proof. We may identify the universal covering space of M as a Riemannian
manifold with R*, and = with a subgroup of the group of Euclidean motions.
Letting D : Euclidean motions — orthogonal group be the usual homomorphism
(indeed it is the derivative) it is clear that Kernel (D|x) is the subgroup of
pure translations and that D(zx) is the holonomy group of M. According to
[3], if we identify R™ with the group of all translations, then Ker D|z is
a full lattice. Thus R" is the vector space spanned by Ker (D|xz). Further-
more, if ¢ e # and @ e Ker D |z C R?”, then g ao™* = D(¢)(a). It can now be
readily verified that Ker D|r is the subgroup #(z) in the characterization of
Theorem 3.5, and that D(x) is the holonomy group of z. Since A’ is normal
in R, if V’ is the vector space spanned by A’, then ¥’ is D(x) invariant. Let
V" be the orthogonal complement of ¥’ in R*. Thus V" is also D(x) invariant.
Now it is clear that since = is a group of affine transformations of R*, z will
induce an action on the space of cosets R*/W where W is any D(x) invariant
subgroup. Thus in particular = induces an action on both R"/V’ and R*/V".
Indeed the obvious isomorphism R™ — R*/V’ X R*/V" is =-equivariant if
we let n act diagonally on the right—i.e., simultaneously on both factors.
Now M = R"/z. We calculate this orbit space by calculating on the right;
and that calculation we do in two stages. We first let the subgroup A’ of = act
and form the orbit space, and then let z/4’ act on the result. Since A’ C V7,
A’ acts trivially on R*/V’. Thus (R*/V’ x R*/V'")JA’ = R*/V’' x (R*]V')]A’".
Clearly though R*/V"' /A’ = R"/V" + A’, since A’ is acting on R" by transla-
tions. Thus we have # acting on R*/V’ x R"/V" + A’ and the orbit space
“is” M. To prove the theorem now we want to show that z is acting on R*/}"’
in such a way that (R"/V’)/z “is” a compact flat Riemannian manifold and
that R*/V"" + A’ “is” a flat torus on which z is acting via isometries. The
second fact is easier. Clearly V’//A” — R*/V"” 4+ A’ is an isomorphism, and
if we endow the right hand space with the metric which it inherits from the
left, then # is acting via isometries. We must show that A’ is a full-lattice in
V’. Since n/A’ is torsion-free, so is #(A4)/A’; therefore we may find free

generators t,, - - -, t, for t(x) such that ¢, - - -, ¢, are free generators for 4’ and
the rest yield free generators for #(A4)/A4’. Thus ¢, ---,¢, must map to a
basis in R*/V’, and ¢, - - -, ¢, must be a basis for V.

It remains then to investigate the action of # on R"*/V’ and the orbit space.
We put a metric on via the isomorphism V' — R"/V’ and note that z is acting
as Euclidean motions. Clearly, also, the ¢, ,, ---,t, yield a full-lattice of
translations. Thus the map ¢: # — Euclidean motions of (V" = R"/V’) is
clearly one-one on the subgroup #rx)/A4’. We will show that this implies that
¢ is.one-one on all of z.

Suppose ¢ € 7 and ¢({g}) = 1. Since z/t(x) is finite for some r > 1, ¢” € #(xn),
hence ¢({e7}) = 1. But we have just seen that ¢ is one-one on #x)/A’; so
o7 e A’, and {g} is of finite order in 7z which is torsion-free by assumption.
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Hence {¢} = 1. It now follows from the argument of [1] that z is acting in
such manner that V*//z is a compact manifold.

Remark 4.2. The proof of the main theorem (Theorem 2.3) is simply the
juxtaposition of the Theorems 3.6 and 4.1.

5. Examples

Foreach n > 1, we define subgroups G, of &,,,, = the group of Euclidean
motions of R**!, which are torsion-free Bieberbach groups imbedded in such
a way that M***! = R*™*1/G, is a compact flat Riemannian manifold. These
groups generalize, in an obvious fashion, the example in [2]. We calculate
w;(M****) and find some non-zero classes. The holonomy group of M***! is
Z, X +++ X Z,= Z7 (nfactors). Since w,,(M***!) == 0 for 2i < n, we can
conclude that n(Z%*) > 2k and n(Z¥+") > 2k.

Definition of G,. G, is the subgroup generated by 2r + 1 elements
B, -5 ly,1s Ty, o005 Ty, Where £; is a translation in R”™ one-unit along the i-th
axis, 1 <i<nr+ 1, and z;, 1 < i< n, translates one half unit along the
(n + 1 + Dth axis and simultaneously reflects in the (i,i + 1) plane.

In coordinate notation,

(X, s X Y Y = Oy e X+ L X s X Y, s Ya) s

Ti(xla e Xnin Yo "yn)
- ('x1> ey Xy, — Xy, — -xi+1’-xi+1: LRI A STRLIILPN 73 + %’ v "yn) .
Note that ¢, - - -, t,,, generate a commutative subgroup which is freely gener-
ated by #,, - -+, ¢,,,. Similarly ¢, - - -, z, generate a free abelian subgroup of

rank n. Actually the first subgroup is normal and so we have a (split) exact
sequence as follows:

O 2t G, =5 72"— 1.
p

Surely then it follows that G, is torsion-free. It is clear that D(z,) is the identi-
ty, or equivalently that ¢; is a translation. While D(z;) is the diagonal matrix
with minus ones in rows i and i + 1 and plus ones elsewhere. Thus the holo-
nomy group D(G,) is isomorphic to Z? generated by D(z;). The translations
subgroup is the free abelian group generated by ¢, ---,%,., and <, - -, 72,
which, of course, is the standard lattice.

Now, since M***' = B, , we may calculate H!(M***'; R) by calculating
HYG,,R) in the sense of [4]. As remarked previously in §1 the tangent

bundle map BGn——ﬂ Byn.1y is the composition of a collection of maps

induced by homomorphisms. Indeed [z] = B; o B, where D: G, — holonomy
is- the homomorphism above and i: D(G,) C 0,,,, is the inclusion map. In
this case we can factor each of the homomorphisms further, and that is the
basis of the calculation below.
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Proposition 5.1.  The Stiefel-Whitney classes w,,(M**"),0 < 2i<n, are not
zero; the others are O.

Proof. Clearly the homomorphism D: G, — holonomy factors through
p: G, — Z, i.e., we may write D = dop where d(0, - - -, 1, ---,0) = D(z,)
i < i < n. Now mapping p*: H{(Z"; R) — HYG,, R) is one-one because we
have a homomorphism s: Z* — G, such that pos = Id and so s* o p* = (Id)*.
Now H*(Z"; R) is known, of course, and is the exterior algebra generated by
HY(Z",R) ~ Hom (H(Z"), R) = Hom (Z", R). In particular, H{(Z*; R) = 0
if i > n. Thus, in particular, w,(M) = O for i > n.

Now we have the subgroup 7,,,, of 0(2m + 1) consisting of diagonal
matrices. Then T,,., ~ Z2*!, and clearly D(G,) C T,,.,. Thus the inclusion
map i;: D(G,) — 0(2n + 1) factors through T,,,,. This is useful because
H*(By, ,,; Z,) is wellknown and the image of w;, the universal Stiefel-Whitney
class, in H4By,,,,; Z,) is known. Specifically, H,(Byr,,,,; Z) is naturally iso-
morphic to T, ., itself, and H{(Br, .,; Z,) =~ H(By,,,,; £)®Z,=T,, ,®Z,
~ Tyuyi- Thus H'(By,,, , Z,)~Hom (Ty,,,; Z,), H*(Br,,,,; Z) = Z,[x,, - - -
X,n.1] Where the x; ¢ H* correspond to the homomorphism ¢;: T,,., — Z,:

b

O ifAHI:l,

A) =
ei( ) 1 ifA”’:—l.

Now w; corresponds t0 ¢;(x,, « -+, Xpn,) € ZolXy, ++ «, Xpn )] = H*(By,,, ., Z))
where ¢, is the i-th elementary symmetric function; see [15].

Now D{(G,) is in the subgroup §,., of T,,,, consisting of matrices having
plus ones beyond the (z + 1)st row. The inclusion S,., C T,,,, can readily
be calculated. Clearly H*(Bg,,,; Z,) = Z[x,, ---, X,,,] analogously to
H*(By,,.,; Z,), and it is trivial to see that via the inclusion S,,, C T,,,, the
elements x; goto X, for 1 < i < n + 1and x; go to zero for i > n + 1. Thus
w; € H{(By4 .1y, Z,) traced back to H{Bg_, ,Z,) is 0,(%X,, - - -, X,,,). Now the

d
map Z" —— §,,, is easily calculated and its effect on H(Z"; Z,) —» H\(S,.,;Z,)
is, after the obvious identifications, d ® 1d: Z"® Z, — S,,, ® Z,. Thus the
dual map HBg_,,; Z,) — H'(Z"; Z,) is readily calculated to be

X, —2z,
X —zi1+ 2z,

Xy 1= Zn_p + Znoy s
.7_Cn —) p—1 + Zn s

xn+1 — 25,

b4

where the z; € H(B4; z,) ~ Hom (Z*, Z,) are the homomorphism z,(a;, - - -
a,) = a;(mod 2).
It is obviously advantageous to use a different basis for H'(Z*; Z,); to wit
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Vy =2,V; =2, + 23 5 Vp = Zy_, + Z,. Thus in the new basis the map
d*: H(Bs,,,; Z,) - H(Z"; Z)is %, > 2;, 1 <i<n,and X,,, > v, + ---
+ v,. Thus the universal Stiefel-Whitney class w; € H{(By, ..y, Z,) goes to

a;(V;, -+, ¥y, v, + .-+ + v,) e Exterior algebra generated by w»,, ---, v,.
This is clearly o,(v,, - -+, v,) + o5y, -+ -, V)@, + --+ + v,). The lemma
below shows that ¢;,_,(v,, -+ -, v, )(®, + -+ + v,) = ig;(v,, - - -, v,). Hence
w; goes to (i + 1)o;(v,; - - -, v,) e Exterior algebra generated by v,, - --,v, =

H*(Z"; Z,). This is clearly zero if and only if i + 1 is even (in the range
0 < i < n). Hence the proposition is proved.

Lemma 5‘2‘ Ui—l(vla M) vn)(vl + v + vn) = iai(vla ) vn)-
Proof. Both sides are clearly symmetric elements in v, - - -, 2, but a look
at H* shows that it has a basis consisting of v, - -- v,,,J, < -+ < j;.

Now the permutation group clearly permutes this basis transitively; thus
the only symmetric elements are 0, and the element which is the sum of all
the basis elements is ¢,(v,, -+ -,?,). The lemma follows simply by counting
the number of occurences of the monomial v, - - - v, ing;_,(v,, - - -, v )(¥,+ - - -
4+ v,), and this number is clearly i.

Corollary 5.3. n(Z) > 2k, n(Z¥*Y) > 2k.

Proof. Combine Proposition 5.1 and Corollary 3.5.

Remarks 5.4. a) If we apply the methods of § 4 we find that the manifold
M+ js a flat toral extension of a flat n-torus. The splitting of the above
sequence is reflected by the existence of a section of this fibration.

b) The fact that n(Z%) > 2k could be deduced by taking a k-fold product
of the example of [2] with itself and applying the product formulas for Stiefel-
Whitney classes.

We include now one last example. It also is a sequence of groups having
Z7 as holonomy group but in “some sense” which we would not venture to
try to make precise is at the opposite extreme from the G,’s.

Definition of G,,. The group G,,, like the group G,, will be a subgroup
of &,,,, such that the orbit space R*"*!/G,, = M***! is a compact flat Rieman-
nian manifold. Its holonomy group is Z3"; it will contain G, as a normal sub-
group of finite index.

Let ¢, € 02n + 1)C &,,., be reflection in the i-th axis, i.e., o;(x;, -+ -, Xpp, 1)
= (X, c e, =Xy ey X, = 1,2, --+,2n 4+ 1. Let s, be translation by
one-half unit in the i-th direction, i.e., s;(x;, - -+, Xppo) = ¥, -, 0, + &, - -

Xpms1). We note that with this notation the element z; above is 0,04, 5, 74
Let Z*»*! be the standard lattice in R***!, and T = R***'/Z***! the quotient
Clearly o; and s; induce isometries of T', which we will denote by ¢; and 5.
Each of these isometries is of order two, and they all commute with one an-
other.
Let h; = 3:;,,5:2n.,¢ = 1,--+,2n + 1. (The subscripts are to be inter-
preted modulo 2xn + 1.) Let @,, be the subgroup of isometries of T' generated
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by A,, - - -, hy,. We claim that @,, is isomorphic to Z;" in the obvious fashion
and that @,, acts without fixed point on 7.
To see this we here really only to show that if e = (¢, -+ +,&,)% (0, ---,0)

€ Z:*, Then A* = h*, - . ., hizr has no fixed points in 7. But surely if ¢, = 0
we have A*[x] = [y] where y;,,.; = & X;,,,; + % modulo 1.

It follows now that T is a regular covering space of the space of orbits
T/®,, = M*+', Thus M***! “is” a compact flat Riemannian manifold. Let
G,, denote its fundamental group which we identify with the group of deck
transformation of its universal covering space R***!. From the covering situa-
tion we get an exact sequence of groups

0—Z" — Gy — By — 1.

From this it is clear that G,, is generated by Z***! together with the elements
h! = 0:6;,.5.ns1 € €ms1r i = 1,---,2n. The holonomy group D(G,,) C
0(2n 4 1) is therefore generated by g,6,,,,i = 1, -.-,2n, and consequently
is isomorphic to Z3*. Indeed the above sequence “is”

0 — #G,,) — G,, — holonomy — 1 .

/

Now the subgroup generated by Z***! together with 4}, i = 1, ..., n, is just
the group G, considered earlier. Thus G, is a subgroup of G,,. Hence M***!
= R**!/G, is a covering space of M***! = R*"*1/G,,. As a consequence of
5.1 above, we have proved the following.

Proposition 5.5. w,(G,,) = 0 for 0 < 2i < n.

Note that unlike Proposition 5.1 we do not assert anything about w;(G,,)
for other values of i. Except for the obvious “w, = 0” (for M is clearly
orientable) we know nothing about the others. For n = 1 however we are
dealing with an orientable 3-manifold which is therefore necessarily parallel-
izable [11]. Indeed G, must be the group G; of [16, pp. 602-603].
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